For the First Time EVER: Scientists Created a Black Hole in The Lab, And Then It Started to Glow like 'Real' Black Holes - Media News 48

For the First Time EVER: Scientists Created a Black Hole in The Lab, And Then It Started to Glow like ‘Real’ Black Holes

new kind of black hole analog could tell us a thing or two about an elusive radiation theoretically emitted by the real thing.

Using a chain of atoms in single-file to simulate the event horizon of a black hole, a team of physicists has observed the equivalent of what we call Hawking radiation – particles born from disturbances in the quantum fluctuations caused by the black hole’s break in spacetime.

This, they say, could help resolve the tension between two currently irreconcilable frameworks for describing the Universe: the general theory of relativity, which describes the behavior of gravity as a continuous field known as spacetime; and quantum mechanics, which describes the behavior of discrete particles using the mathematics of probability.

For a unified theory of quantum gravity that can be applied universally, these two immiscible theories need to find a way to somehow get along.

This is where black holes come into the picture – possibly the weirdest, most extreme objects in the Universe. These massive objects are so incredibly dense that, within a certain distance of the black hole’s center of mass, no velocity in the Universe is sufficient for escape. Not even light speed.

That distance, varying depending on the mass of the black hole, is called the event horizon. Once an object crosses its boundary we can only imagine what happens, since nothing returns with vital information on its fate. But in 1974, Stephen Hawking proposed that interruptions to quantum fluctuations caused by the event horizon result in a type of radiation very similar to thermal radiation.

If this Hawking radiation exists, it’s way too faint for us to detect yet. It’s possible we’ll never sift it out of the hissing static of the Universe. But we can probe its properties by creating black hole analogs in laboratory settings.

This has been done before, but now a team led by Lotte Mertens of the University of Amsterdam in the Netherlands has done something new.

A one-dimensional chain of atoms served as a path for electrons to ‘hop’ from one position to another. By tuning the ease with which this hopping can occur, the physicists could cause certain properties to vanish, effectively creating a kind of event horizon that interfered with the wave-like nature of the electrons.

The effect of this fake event horizon produced a rise in temperature that matched theoretical expectations of an equivalent black hole system, the team said, but only when part of the chain extended beyond the event horizon.

This could mean the entanglement of particles that straddle the event horizon is instrumental in generating Hawking radiation.

The simulated Hawking radiation was only thermal for a certain range of hop amplitudes, and under simulations that began by mimicking a kind of spacetime considered to be ‘flat’. This suggests that Hawking radiation may only be thermal within a range of situations, and when there is a change in the warp of space-time due to gravity.

It’s unclear what this means for quantum gravity, but the model offers a way to study the emergence of Hawking radiation in an environment that isn’t influenced by the wild dynamics of the formation of a black hole. And, because it’s so simple, it can be put to work in a wide range of experimental set-ups, the researchers said.

“This, can open a venue for exploring fundamental quantum-mechanical aspects alongside gravity and curved spacetimes in various condensed matter settings,” the researchers write.

Related Posts

The Hubble Space Telescope has recorded the mass and position of a black hole for the first time

The HuƄƄle Space Telescope seeмs to Ƅe iмproʋing with age. How else can you explain the fact that it reʋeals knowledge that has Ƅeen kept hidden eʋen…

Planets Scream As They’re Ripped Apart, Astronomers Say

  Advertisements Unintentionally heartbreaking research suggests that as some planets break up, they may let out cosmic radio waves that sound like screams. In a recent interview…

A Super Rare Kilonova Explosion Was Captured By Hubble Telescope!

A kilonova is a huge explosion in space that is unlike anything you have ever heard of. That’s because it’s not just one star breaking up or…

NASA’s Juno Spacecraft Beams Back The Sharpest Images Of Jupiter—Ever

On July 5, 2022, NASA’s Juno probe did its 43rd close flyby of Jupiter. It studied the colors and shapes of the clouds on the giant planet….

Astronomers find hidden galaxies at the edge of space and time

A team of researchers unintentionally discovered two hidden galaxies at the frontier of space and time. A group of scientists discovered and has now identified two hidden…

BREAKING : Astronomers just discovered an extreme supermassive black hole lurking at the edge of the universe

Astronomers from the University of Texas and the University of Arizona have discovered a fast-growing black hole in one of the most extreme galaxies known at the…

Leave a Reply

Your email address will not be published. Required fields are marked *