Astronomers map a neutron star’s surface for the first time

NASA’s NICER instrument reveals that neutron stars are not as simple as we thought.

Pulsars are the lighthouses of the universe. These tiny, compact objects are neutron stars — the remnants of once-massive stars — that spin rapidly, beaming radiation into space. Now, for the first time, astronomers have mapped the surface of a 16-mile-wide pulsar in exquisite detail. The result challenges astronomers’ textbook picture of a pulsar’s appearance and opens the door to learning more about these extreme objects.

From its perch on the exterior of the International Space Station, the Neutron star Interior Composition Explorer, or NICER, looks for X-rays from extreme astronomical objects, such as pulsars. In a series of papers published in The Astrophysical Journal Letters, researchers used NICER to observe the pulsar J0030+0451, or J0030 for short, which lies 1,100 light-years away in the constellation Pisces. Two teams — one led by researchers at the University of Amsterdam and the other led by the University of Maryland — watched the X-ray light from J0030 over time to map the pulsar’s surface and measure its mass. Both teams arrived at a picture that is not what they expected.

Making a map

Pulsars, like black holes, are extremely dense but extremely small objects. Their immense gravity bends space-time around them, giving us a glimpse at the far side of the pulsar, even as they rotate out of view. The effect also makes the pulsar appear slightly larger than its actual size. Because NICER can clock the arrival of X-rays from the pulsar with extreme precision (better than 100 nanoseconds ), the researchers were able to build a map of the star’s surface and measure its size with unprecedented accuracy.

The teams determined that the neutron star is between 1.3 and 1.4 times the mass of the Sun. And it is roughly 16 miles (26 kilometers) wide. (By contrast, our Sun stretches just over 864,000 miles [1.3 million km] across.)

Those stats aren’t surprising. But next, the astronomers looked to map the location of hotspots on J0030’s surface. The simple, textbook image used to describe pulsars shows these objects with two hotspots, one at each of their magnetic poles. As the star spins, the hotspots shoot radiation out into space in thin beams, like a lighthouse. If one or both beams happen to pass over Earth, astronomers observe a pulsar.

J0030’s is oriented with its northern hemisphere pointed toward Earth. So, the teams expected to see a hotspot near the north pole. Mapping the hotspots required supercomputer modeling to disentangle where the X-rays NICER received from the pulsar originated on the star’s surface. The task would have taken normal desktop computers about a decade to complete, but the supercomputers finished in less than a month.

A new picture

What the teams found presented a different picture: J0030 has two or three hotspots, all in the southern hemisphere. The University of Amsterdam team believes the pulsar has one small, circular spot and one thin, crescent-shaped spot spinning around its lower latitudes. The University of Maryland team found the X-rays could alternatively be coming from two oval spots in the southern hemisphere, as well as one cooler spot close to the star’s south pole.

Neither result is the simple picture astronomers expected, indicating that the pulsar’s magnetic field, which causes the hotspots, is likely even more complex than originally assumed. While the result certainly leaves astronomers wondering, “It tells us NICER is on the right path to help us answer an enduring question in astrophysics: What form does matter take in the ultra-dense cores of neutron stars?” NICER science lead and study co-author Zaven Arzoumanian said in a press release.

With this accomplishment, astronomers will now look to duplicate it using more pulsars, building up a better understanding of what these strange stars look like and how they work.

Related Posts

The Big Bang May Have Created A ‘Mirror Universe’, Where Time Runs Backwards

In November 2018, three physicists from the prestigious Perimeter Institute for Theoretical Physics, in Waterloo, Canada, proposed an extraordinary idea: from the Big Bang not only the…

Scientists have traced Earth’s path through the galaxy via tiny crystals found in the crust

This article was originally published at The Conversation. (opens in new tab) The publication contributed the article to’s Expert Voices: Op-Ed & Insights. Chris Kirkland (opens in new tab) is a professor…

BREAKING: Astronomers find the fastest nova yet — and it never stops wobbling

The unusual nova may give information on how star explosions populate the solar system and the universe as a whole. Matter stolen from a partner star flows…

Scientists Find ‘Evidence’ of Another Universe Before Our Own

Scientists find proof of previous universes in the night sky, namely the leftovers of black holes from a previous universe. According to New Scientist, the concept is based…

Early 17 miles, or 27 kilometers, Black Holes Coυld Become Massive Particle Αccelerators

Wheп sυch objects reach the eveпt horizoп, they are accelerated to iпcredible velocities. Some physicists пow sυggest υsiпg the gravitatioпal pυll of black holes to create powerfυl…

Countdown to the end of the world? NASA is keeping an eye on a massive asteroid that might wipe out human civilisation

minus 56 days till impact… but not quite. NASA says its automated tracking systems at the Center for Near-Earth Object Studies in the U.S. state of California…

Leave a Reply

Your email address will not be published. Required fields are marked *